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Threshold of induced transparency in the relativistic interaction of an electromagnetic wave
with overdense plasmas
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An exact analytical investigation of the stationary solutions describing the interaction between high-intensity
laser radiation and an overdense plasma is presented. Both the relativistic and striction nonlinearities are taken
into account, and their joint action gives rise to a solitary solution. This solution clearly shows that there exists
an inherent limit of the induced transparency on the density of the overdense plasma in order to obtain a
stationary physical solution. Furthermore, it is found that the striction nonlinearity tends to create a strong
peaking of the plasma electron density, which suppresses the laser penetration and significantly enhances the
threshold intensity for induced transparency.

PACS numbgs): 52.40.Nk, 52.58.Ns, 52.35.Mw

[. INTRODUCTION a suppression of the laser penetration and a significant en-
hancement of the threshold of penetration.
Modern laser technology offers a wide range of possibili- In order to define the threshold of induced transparency, it

ties for exploring those regimes of interaction between a lais enough to consider a stationary model to describe the in-
ser pulse and a plasma where effects such as relativistic arigiraction between circularly polarized, superintense electro-
striction nonlinearities play a fundamental role in determin-magnetic radiation normally incident on a sharp boundary
ing the dynamical evolution of the systeisee, for example, Separating vacuum and a cold, overdense plasma. It follows
[1]). These effects become very important in the proposeywat,.ln_order to obtain a physmal solution, th(_arg is an inher-
scientific and technical applications, which range from€nt limit for the penetration of the Iaser. .radla'uon into the
plasma-based particle and photon accelerd®@jfso inertial plaszmaz that depends on the supercritical parameter
confinement fusionf3,4]. Since in this new regime of high = wp/w”, wherew is the carrier frequency of the laser radia-

laser intensity the quiver velocity of electrons is relativistic,t'ort‘) "’(‘jndl“’p IS t?ﬁ plasma frfﬁ‘glfjencxé of the initial L:(npclar—
one of the main effects in laser-plasma interaction is assoctr€d plasma. The regime of induced transparency for laser

ated with the relativistic increase of the inertial electron mas$"¢'9Y penetration through the plasma will take place when

. he incident intensity exceeds this threshold.
and the consequent lowering of the natural plasma frequency

that may crucially modify the optical properties of a plasma.

In the 1970's, it was shown that superintense electromag- Il. MODEL EQUATIONS

netic radiation would be able to propagate through a classi- Tpe ultrahigh-intensity, laser-plasma interaction is de-
cally overdense plasma due to the relativistic correction tacriped by the relativistic equation of motion for the elec-
the electron mass, the so-called induced transparency effeghns, the equation of continuity, and Maxwell's equations,
[5-9]. By means of an analytical approach, specific self-as expressed by Poisson’s equation and the wave equation
consistent solutions describing the penetration of relativistifor the vector potential. For the short-time scale of interest,
cally strong waves into inhomogeneous plasmas were foungve assume that ions are inertially frozen in space and treated
Recent numerical simulations based on relativistic particleas a uniform neutralizing background. We will consider a
in-cell codes[4,10—13, multifluid plasma code$14], and one-dimensional case, with all the physical quantities de-
Vlasov simulations[15], as well as recent experiments pending only on the coordinate along the direction of
[16,17], have revealed a number of new features of the inpropagation. Then, we have the following governing set of
teraction dynamics, such as laser hole boring, enhanced iself-consistent equations in the Coulomb ga(gge, for ex-
cident energy absorption, multi-MeV electron beams producample,[18,19):

tion and strong magnetic field generation. Nevertheless,

important characteristics such as the threshold of self- PA 1 RA  Ame?

induced transparency in the relativistic interaction of a laser T 2 o ——NAA, (1)
with sharp-boundary overdense plasmas were not considered ox* ¢ gt? mcly

in detail. The commonly presented definition of this thresh-

old is derived from a traveling-wave approach for homoge- 52

neous plasmas, but, as it is shown in this work, this same E:_[L"Te(NO_Ne)i 2
threshold should be essentially modified in the case of non-

uniform plasmas due to the action of the ponderomotive

force, which pushes electrons into the plasma thus creating a M _ % _ ‘9_7 &)
strong peaking of the plasma electron density. This results in at IX ax’
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oN d
(?te+ Ix (4) charges are uncompensated. In this region, the ponderomo-
tive force is unbalanced and pushes all electrons forward
Here, p| is the longitudinal momentum of the electrons, inside the plasma, thus shifting the actual electron plasma
=(1+ pﬁ/m2c2+ e?|A|2/m?c*) 12 is the relativistic factor, boundary fromxy=0 to a new positiorxy>0. In this situa-
N, is the local electron densityNj, is the background ion tion we have a region depleted of its electrons=( for 0
density, A and ¢ are vector and scalar potentials of the <X<Xq) where the longitudinal field varies linearly with
electromagnetic fields, respectively, ands the rest electron @Sd¢/dx=—noX, reaching a maximum electric field,, at

p| tion region at the vacuum-plasma boundary, where ion
°my =0

mass. the new boundary positior=xgq,
It is convenient as usual to introduce the dimensionless
variables in relativistic units: Eq=NoXq- 9
eA ed p| o In the regionx<xq4, including the pure ion layer (@x

a= ) p= ey PI=me t=owt, x= et B <xg), the electromagnetic fielda(x) corresponds to a
vacuum solution.
We also assume that circularly polarized laser radiation with At the bi)undary of the depletion regior-x4, we obtain
vector potentialA=A(x,t)Re (y+iz)expet))y2 is nor- 9d7(Xa)/dx=—nex4, which can be written as
mally incident from vacuum X<<0) onto a semi-infinite

/ 2
plasma &=0). In the stationary regime, the basic equations Xg=— i d(vi+a’) (10)
read[8] Ng dx -
de dy . : : .
% dx’ (6) Finally, for x>x4, making use of the Poisson and conti-
X ax nuity equations, we can write the wave equation as
szD 2 2
—— =No(n—1), (M dla__a (da 2 2) 0=
2 ———|=—] +(1+a“—ngyl+a“)a=0. (11
dx 2 Toialdx) T oV1+a?)a=0. (11)
2
E+ 1—En a=0. (8) At the boundaryx=x4, the solution of Eq.(11) must be
dx? Y matched to the vacuum solution by the continuity conditions

12 _ _ for the electric and magnetic components of the laser field.
Here, y=(1+a%)"% a=eA(x)/mc’ is the normalized am- Representing the vacuum solution as a sum of incident and

plitude of the vector potentiah is the electron density nor- reflected electromagnetic waves, the incident amplitude has
malized on the unperturbed density=Nc/No, and Ny to obey the following condition:

=Ng/N.>1 is the overdense plasma parameter whege

=mw?/4me? is the critical plasma density. 1 dal?
Equation(6) describes how, in the region where electron =5 aj+ ax (12
density n(x) #0, the ponderomotive forcdy/dx must be X=Xg

compensated by the force of the longitudinal field due to

space-charge separation. Although a similar model has aln which the boundary positiorxy must be defined self-
ready been discuss¢fl], we will emphasize the analysis of consistently.

the physical problem applicable to the interaction of high- For homogeneous ion density, the system described by
intensity laser with sharp-boundary overdense plasmas arfdg. (11) has the following Hamiltonian:

present an exact expression of the threshold intensity for the

phenomenon of self-induced transparency. 1 2

da
dx

—;(Znox/1+a2—a2). (13

H= 2
Ill. THRESHOLD OF INDUCED TRANSPARENCY 2(1+a’)
Let us start our analysis by discussing the effect of longi- A phase portrait and a class of possible solutions de-
tudinal field production at the plasma-vacuum boundary duacribed by the Hamiltoniafil3) were presented if8]. Here
to charge separation caused by the action of the ponderomave will consider in more detail the case wherg)— 1 and
tive force. As was mentioned above, Ef) indicates thatin  both a(x) and da/dx vanish asx—x, that is, of all the
the electron plasma region the ponderomotive force must bstationary solutions, we only consider localized field distri-
compensated at the boundaxy=0 by a force due to the butions, in which case the integral of motion beconiés
charge-separation field if(x=0)#0. = —n,. It should be emphasized that only this kind of solu-
On the other hand, integrating Poisson’s equation over théon, which is consistent with the semi-infinite plasma con-
whole plasma half space, we obtain from the condition offiguration, allows us to define stationary field-plasma distri-
charge neutrality thatle(0)/dx=0. However, this implies butions and gives conclusions related to the induced
thatdy(0)/dx=0, a condition that does not necessarily havetransparency effect for comparatively thick plasma layers. In
to be fulfilled. We conclude that a possible stationary soluthis case, Eq(13) can easily be integrated to yield the fol-
tion of the considered model equations may include a depldowing single-parameter solitary solution:
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FIG. 1. Relative intensity of the field distributiofzontinuous FIG. 2. Maximum incident amplitude as a function of the criti-

line) along with the electron density profilghick continuous ling  cal parameteng. The continuous line represents the threshold given
and the ion-density distributio(dashed lingfor np=2 and maxi- by Eq.(15) valid for ng>1.5, and fomy<<1.5 as given by Eq11).

mum incident intensity. The electron density vanishes at the actualhe dashed line represents the commonly used threshold as given
boundary positiorxy. All the quantities are dimensionless. by Eq. (16). All amplitudes are dimensionless.

As for the intensity threshold at overcritical parameters

a(x)= . (14  Nho>1.5, the calculation is slightly more complicated. Since
Ny coskl (ng—1)Y2(x—xg)]— (Ng—1) in this case, as can be seen in Fig. 1, a depletion layer in the

plasma region near the boundary to the vacuum is a neces-

The parametex, defines the peak position of the function Sary condition, let us calculate the field amplitudg, , at
a(x), where the amplitude is equal &,=2[ng(ng—1)]*2 the point where the electron density vanishes. Combining

Matching this solution to the vacuum one, we can write theEds: (8), (11), and(13), we find that this amplitude satisfies
full solution of the stationary problem. However, it should be the following relation:

noted that for constructing the full solution we can only use 3

the part of the functiori14) where its first derivative, defin- —Ngy1+ adz* =ng+ ag* , a7
ing the ponderomotive force, is positive and pushes electrons 2

into the plasma. Only in this case can the ponderomotiv?e

force be balanced by the electric force due to charge separa-"’

ay cosh (ng— 1)1/2(X— Xo)]

tion. In the region where ponderomotive force pulls electrons 9 3 [9
out of plasma, the condition of charge quasineutrality cannot a3, = no( —ng—1+ =\/==n3—no+1]. (18
be fulfilled. 8 2 V16

At the symmetry point, where the amplitude of the solu-
tion (14) reaches its maximum value af, the density has a
corresponding minimum given by

As was mentioned above, the boundary problem requires
that we match the solution inside the plasma regierx, to
the vacuum solution fox< x4 at the point where the electron
density vanishes. On the other hand, an expression for the
Nm=1-4(ny— 1) (15  incident amplitude as a function of the amplitude at the
boundary of the depleted region is obtained from Ec):
The condition that this value has to be positing=0, gives 1
us a condition for the background plasma density and an af=2[2ng(1+ag)(V1+ai—1)—ag]. (19)
additional argument in favor of the depletion region. We 4
may use a localized solution of the form given by Etg)
only if ng=<1.5, whereas, fony,>1.5 we have to take into
account only that part of the solution where the correspond
ing electron density function is positiva(x)=0. ! : ; ) )
The field structure together with the correspondingdenSIty vam;shes, 1.€.86) max= gy , and finally we obtain
electron-density profile are shown in Fig. 1 for a value of thethe penetration threshold as
parameten, higher than the critical value. As follows from 172
the boundary condition given by E¢12) and the field solu- an= () max=5 §(1+a§*)(2a§* —ng) —ag,
tion given by Eq14), for a givenng, there is a maximum 20)
value of the incident intensity such that a stationary nonlin-

ear skin-layer-like solution exists. This maximum incident The threshold value is thus defined as the maximum value

intensity can be identified with the penetration threshold fofor the incident amplitude that can be matched to the field

induced transparency: at incident intensities exceeding thistrycture inside the plasma at the point where the electron

threshold, laser radiation can propagate through the ovegensity vanishes, i.e., at the actual boundary.

dense plasma. . . The threshold for nonlinear penetration is presented in
For the case ohy=<1.5(no depletion region the thresh-  Fig 2 as a function of the overcritical parameter for both

old of induced transparency is easily calculated from Eqn <1.5 andn,>1.5. For comparison we present here also

(12) with a maximum ofay equal to the maximum amplitude the commonly used threshold following from a traveling-
of the obtained solution, and it turns out to be plane-wave approadb—7):

It is recognized that when the incident amplitude assumes its
maximum value, the corresponding boundary amplitude
(ag)max has exactly the same value at which the electron

1/2

4= (@) max= Mlo(Mo— 1). (16) (8 hax= V5~ 1. @y
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FIG. 3. Maximum electron density, normalized on the unper- T, 05 1 15 2 Iy

turbed density, as a function of the critical parametgr The Incident Intensity

dashed line represents the unperturbed electron demsity,. FIG. 4. Boundary position and boundary electric figsée Eq.

. ) ) (4)] as functions of the incident intensity, fop= 1.2 (dotted ling
The difference between the threshold given by either Eqsandnozz (dashed ling All quantities are dimensionless.

(16), or (20), calculated taking into account both the striction

and the relativistic nonlinearities, and the one given by Edfunction of the incident intensity: at the beginning it in-
(21), becomes essential at higher background plasma densireases with incident intensity reaching its maximum value,
ties. For example, ato>1 the threshold intensity depends pyt then decreases to zesee Fig. 4a)]. This is a direct
on background density @~ ;ng, so that, for instance, for consequence of the solitonlike solution presented by Eq.
no= 10 the threshold of penetration is more than forty times(14). At higher densities, the longitudinal field monotonously
higher than the one defined by E@1). The difference is increases with laser intensity until its threshold value. This
due to the strong increase in the electron density caused Hjeld, directly responsible for the ion dynamics and the for-
the action of the ponderomotive force. Figu8? shows the mation of shock waves entering the matter and compressing
dependence of the maximum electron density on the backt, reaches a maximum value about two times larger than the

ground plasma density and clearly demonstrates the exisimit amplitude of the incident wave at,>1.
tence of a suppressing effect on the penetration of the elec-

tromagnetic radiation into an overdense plasma.
For the maximum incident amplitude, we can calculate

IV. CONCLUSIONS

the width of the depletion region as In summary, we have used a stationary model to gain
insight into the relativistic interaction problem of superin-
2 [ag, tense laser radiation with an overdense plasma by consider-
Xex = dx 3_no 2n0_1 g ing circularly polarized incident laser radiation. The main

conclusion is that for laser penetration into a rather thick
and the associated maximum of the longitudinal electric fieldoverdense plasma, a traveling-plane-wave approach cannot
integrating Poisson equation between0 andx,. Making  be applied because in real situations this regime cannot be
use of the integral of motion and the expression for the maxiachieved, although, due to the relativistic increase of the

(22)

mum incident intensity, we find electron mass and the associated decrease of the effective
2 1/2

ad*

e 1” . (23

, 2
Eq=noXq=|4as,— §no
The corresponding results are presented in Fig. 4. What i
interesting is that at plasma densities in the rangenf
=1-1.5, the longitudinal electric field is not an increasing

plasma frequency, the nonlinear refractive index may be-
come positive. The nonlinear ponderomotive force generated
in the laser-plasma interaction leads to a compression of the
electron-density profile that counteracts the increased pen-
stration due to the relativistic nonlinearity and plays a crucial

role in the description of the interaction between an over-

dense plasma and high-intensity laser radiation.
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