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Threshold of induced transparency in the relativistic interaction of an electromagnetic wave
with overdense plasmas

F. Cattani,1 A. Kim,2 D. Anderson,1 and M. Lisak1
1Department of Electromagnetics, Chalmers University of Technology, S-412 96 Go¨teborg, Sweden

2Institute of Applied Physics, Russian Academy of Sciences, 603600 Nizhny Novgorod, Russian Federation
~Received 15 October 1999!

An exact analytical investigation of the stationary solutions describing the interaction between high-intensity
laser radiation and an overdense plasma is presented. Both the relativistic and striction nonlinearities are taken
into account, and their joint action gives rise to a solitary solution. This solution clearly shows that there exists
an inherent limit of the induced transparency on the density of the overdense plasma in order to obtain a
stationary physical solution. Furthermore, it is found that the striction nonlinearity tends to create a strong
peaking of the plasma electron density, which suppresses the laser penetration and significantly enhances the
threshold intensity for induced transparency.

PACS number~s!: 52.40.Nk, 52.58.Ns, 52.35.Mw
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I. INTRODUCTION

Modern laser technology offers a wide range of possib
ties for exploring those regimes of interaction between a
ser pulse and a plasma where effects such as relativistic
striction nonlinearities play a fundamental role in determ
ing the dynamical evolution of the system~see, for example
@1#!. These effects become very important in the propo
scientific and technical applications, which range fro
plasma-based particle and photon accelerators@2# to inertial
confinement fusion@3,4#. Since in this new regime of high
laser intensity the quiver velocity of electrons is relativist
one of the main effects in laser-plasma interaction is ass
ated with the relativistic increase of the inertial electron m
and the consequent lowering of the natural plasma freque
that may crucially modify the optical properties of a plasm
In the 1970’s, it was shown that superintense electrom
netic radiation would be able to propagate through a cla
cally overdense plasma due to the relativistic correction
the electron mass, the so-called induced transparency e
@5–9#. By means of an analytical approach, specific se
consistent solutions describing the penetration of relativi
cally strong waves into inhomogeneous plasmas were fou
Recent numerical simulations based on relativistic partic
in-cell codes@4,10–13#, multifluid plasma codes@14#, and
Vlasov simulations@15#, as well as recent experimen
@16,17#, have revealed a number of new features of the
teraction dynamics, such as laser hole boring, enhanced
cident energy absorption, multi-MeV electron beams prod
tion and strong magnetic field generation. Neverthele
important characteristics such as the threshold of s
induced transparency in the relativistic interaction of a la
with sharp-boundary overdense plasmas were not consid
in detail. The commonly presented definition of this thres
old is derived from a traveling-wave approach for homog
neous plasmas, but, as it is shown in this work, this sa
threshold should be essentially modified in the case of n
uniform plasmas due to the action of the ponderomot
force, which pushes electrons into the plasma thus creati
strong peaking of the plasma electron density. This result
PRE 621063-651X/2000/62~1!/1234~4!/$15.00
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a suppression of the laser penetration and a significant
hancement of the threshold of penetration.

In order to define the threshold of induced transparenc
is enough to consider a stationary model to describe the
teraction between circularly polarized, superintense elec
magnetic radiation normally incident on a sharp bound
separating vacuum and a cold, overdense plasma. It foll
that, in order to obtain a physical solution, there is an inh
ent limit for the penetration of the laser radiation into t
plasma that depends on the supercritical parametern0

5vp
2/v2, wherev is the carrier frequency of the laser radi

tion and vp is the plasma frequency of the initial unpe
turbed plasma. The regime of induced transparency for la
energy penetration through the plasma will take place w
the incident intensity exceeds this threshold.

II. MODEL EQUATIONS

The ultrahigh-intensity, laser-plasma interaction is d
scribed by the relativistic equation of motion for the ele
trons, the equation of continuity, and Maxwell’s equation
as expressed by Poisson’s equation and the wave equ
for the vector potential. For the short-time scale of intere
we assume that ions are inertially frozen in space and tre
as a uniform neutralizing background. We will consider
one-dimensional case, with all the physical quantities
pending only on the coordinatex, along the direction of
propagation. Then, we have the following governing set
self-consistent equations in the Coulomb gauge~see, for ex-
ample,@18,19#!:

]2A

]x2
2

1

c2

]2A

]t2
5

4pe2

mc2g
NeA, ~1!

]2f

]x2
524pe~N02Ne!, ~2!

]pi

]t
5e

]f

]x
2mc2

]g

]x
, ~3!
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]Ne

]t
1

]

]x S Ne

pi

mg D50. ~4!

Here, pi is the longitudinal momentum of the electrons,g
5(11pi

2/m2c21e2uAu2/m2c4)1/2 is the relativistic factor,
Ne is the local electron density (N0 is the background ion
density!, A and f are vector and scalar potentials of th
electromagnetic fields, respectively, andm is the rest electron
mass.

It is convenient as usual to introduce the dimensionl
variables in relativistic units:

a5
eA

mc2
, w5

ef

mc2
, pi5

pi

mc
, t5vt, x5

v

c
x. ~5!

We also assume that circularly polarized laser radiation w
vector potentialA5A(x,t)Re@(y1 iz)exp(ivt)#/A2 is nor-
mally incident from vacuum (x,0) onto a semi-infinite
plasma (x>0). In the stationary regime, the basic equatio
read@8#

dw

dx
5

dg

dx
, ~6!

d2w

dx2
5n0~n21!, ~7!

d2a

dx2
1S 12

n0

g
nDa50. ~8!

Here,g5(11a2)1/2, a5eA(x)/mc2 is the normalized am-
plitude of the vector potential,n is the electron density nor
malized on the unperturbed densityn5Ne /N0, and n0
5N0 /Nc.1 is the overdense plasma parameter whereNc
5mv2/4pe2 is the critical plasma density.

Equation~6! describes how, in the region where electr
density n(x)Þ0, the ponderomotive forcedg/dx must be
compensated by the force of the longitudinal field due
space-charge separation. Although a similar model has
ready been discussed@8#, we will emphasize the analysis o
the physical problem applicable to the interaction of hig
intensity laser with sharp-boundary overdense plasmas
present an exact expression of the threshold intensity for
phenomenon of self-induced transparency.

III. THRESHOLD OF INDUCED TRANSPARENCY

Let us start our analysis by discussing the effect of lon
tudinal field production at the plasma-vacuum boundary
to charge separation caused by the action of the pondero
tive force. As was mentioned above, Eq.~6! indicates that in
the electron plasma region the ponderomotive force mus
compensated at the boundaryx50 by a force due to the
charge-separation field ifn(x50)Þ0.

On the other hand, integrating Poisson’s equation over
whole plasma half space, we obtain from the condition
charge neutrality thatdw(0)/dx50. However, this implies
thatdg(0)/dx50, a condition that does not necessarily ha
to be fulfilled. We conclude that a possible stationary so
tion of the considered model equations may include a de
s
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tion region at the vacuum-plasma boundary, where
charges are uncompensated. In this region, the pondero
tive force is unbalanced and pushes all electrons forw
inside the plasma, thus shifting the actual electron plas
boundary fromxd50 to a new positionxd.0. In this situa-
tion we have a region depleted of its electrons (n50 for 0
,x,xd) where the longitudinal field varies linearly withx
asdw/dx52n0x, reaching a maximum electric fieldEm at
the new boundary positionx5xd ,

Ed5n0xd . ~9!

In the regionx,xd , including the pure ion layer (0,x
,xd), the electromagnetic fielda(x) corresponds to a
vacuum solution.

At the boundary of the depletion regionx5xd , we obtain
dg(xd)/dx52n0xd , which can be written as

xd52
1

n0
Fd~A11a2!

dx G
x5xd

. ~10!

Finally, for x.xd , making use of the Poisson and con
nuity equations, we can write the wave equation as

d2a

dx2
2

a

11a2 S da

dxD
2

1~11a22n0A11a2!a50. ~11!

At the boundaryx5xd , the solution of Eq.~11! must be
matched to the vacuum solution by the continuity conditio
for the electric and magnetic components of the laser fie
Representing the vacuum solution as a sum of incident
reflected electromagnetic waves, the incident amplitude
to obey the following condition:

ai5
1

2Aad
21Fda

dxG
x5xd

2

~12!

in which the boundary positionxd must be defined self-
consistently.

For homogeneous ion density, the system described
Eq. ~11! has the following Hamiltonian:

H5
1

2~11a2!
S da

dxD
2

2
1

2
~2n0A11a22a2!. ~13!

A phase portrait and a class of possible solutions
scribed by the Hamiltonian~13! were presented in@8#. Here
we will consider in more detail the case wheren(x)→1 and
both a(x) and da/dx vanish asx→`, that is, of all the
stationary solutions, we only consider localized field dist
butions, in which case the integral of motion becomesH
52n0. It should be emphasized that only this kind of sol
tion, which is consistent with the semi-infinite plasma co
figuration, allows us to define stationary field-plasma dis
butions and gives conclusions related to the induc
transparency effect for comparatively thick plasma layers
this case, Eq.~13! can easily be integrated to yield the fo
lowing single-parameter solitary solution:
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a~x!5
am cosh@~n021!1/2~x2x0!#

n0 cosh2@~n021!1/2~x2x0!#2~n021!
. ~14!

The parameterx0 defines the peak position of the functio
a(x), where the amplitude is equal toam52@n0(n021)#1/2.
Matching this solution to the vacuum one, we can write
full solution of the stationary problem. However, it should
noted that for constructing the full solution we can only u
the part of the function~14! where its first derivative, defin
ing the ponderomotive force, is positive and pushes electr
into the plasma. Only in this case can the ponderomo
force be balanced by the electric force due to charge sep
tion. In the region where ponderomotive force pulls electro
out of plasma, the condition of charge quasineutrality can
be fulfilled.

At the symmetry point, where the amplitude of the so
tion ~14! reaches its maximum value ofam the density has a
corresponding minimum given by

nm5124~n021!2. ~15!

The condition that this value has to be positive,nm>0, gives
us a condition for the background plasma density and
additional argument in favor of the depletion region. W
may use a localized solution of the form given by Eq.~14!
only if n0<1.5, whereas, forn0.1.5 we have to take into
account only that part of the solution where the correspo
ing electron density function is positive,n(x)>0.

The field structure together with the correspondi
electron-density profile are shown in Fig. 1 for a value of t
parametern0 higher than the critical value. As follows from
the boundary condition given by Eq.~12! and the field solu-
tion given by Eq.~14!, for a givenn0, there is a maximum
value of the incident intensity such that a stationary non
ear skin-layer-like solution exists. This maximum incide
intensity can be identified with the penetration threshold
induced transparency: at incident intensities exceeding
threshold, laser radiation can propagate through the o
dense plasma.

For the case ofn0<1.5 ~no depletion region!, the thresh-
old of induced transparency is easily calculated from E
~12! with a maximum ofad equal to the maximum amplitud
of the obtained solution, and it turns out to be

ath[~ai !max5An0~n021!. ~16!

FIG. 1. Relative intensity of the field distribution~continuous
line! along with the electron density profile~thick continuous line!
and the ion-density distribution~dashed line! for n052 and maxi-
mum incident intensity. The electron density vanishes at the ac
boundary positionxd . All the quantities are dimensionless.
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As for the intensity threshold at overcritical paramete
n0.1.5, the calculation is slightly more complicated. Sin
in this case, as can be seen in Fig. 1, a depletion layer in
plasma region near the boundary to the vacuum is a ne
sary condition, let us calculate the field amplitude,ad* , at
the point where the electron density vanishes. Combin
Eqs.~8!, ~11!, and~13!, we find that this amplitude satisfie
the following relation:

3

2
n0A11ad*

2 5n01ad*
2 , ~17!

i.e.,

ad*
2 5n0S 9

8
n0211

3

2
A 9

16
n0

22n011D . ~18!

As was mentioned above, the boundary problem requ
that we match the solution inside the plasma regionx>xd to
the vacuum solution forx<xd at the point where the electro
density vanishes. On the other hand, an expression for
incident amplitude as a function of the amplitude at t
boundary of the depleted region is obtained from Eq.~13!:

ai
25

1

4
@2n0~11ad

2!~A11ad
221!2ad

4#. ~19!

It is recognized that when the incident amplitude assume
maximum value, the corresponding boundary amplitu
(ad)max has exactly the same value at which the elect
density vanishes, i.e., (ad)max5ad* , and finally we obtain
the penetration threshold as

ath[~ai !max5
1

2 F2

3
~11ad*

2 !~2ad*
2 2n0!2ad*

4 G1/2

.

~20!

The threshold value is thus defined as the maximum va
for the incident amplitude that can be matched to the fi
structure inside the plasma at the point where the elec
density vanishes, i.e., at the actual boundary.

The threshold for nonlinear penetration is presented
Fig. 2 as a function of the overcritical parameter for bo
n0<1.5 andn0.1.5. For comparison we present here a
the commonly used threshold following from a travelin
plane-wave approach@5–7#:

~ai !max* 5An0
221. ~21!

al

FIG. 2. Maximum incident amplitude as a function of the cri
cal parametern0. The continuous line represents the threshold giv
by Eq.~15! valid for n0.1.5, and forn0,1.5 as given by Eq.~11!.
The dashed line represents the commonly used threshold as g
by Eq. ~16!. All amplitudes are dimensionless.
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The difference between the threshold given by either E
~16!, or ~20!, calculated taking into account both the strictio
and the relativistic nonlinearities, and the one given by
~21!, becomes essential at higher background plasma de
ties. For example, atn0@1 the threshold intensity depend
on background density asath

2 . 27
64 n0

4, so that, for instance, fo
n0510 the threshold of penetration is more than forty tim
higher than the one defined by Eq.~21!. The difference is
due to the strong increase in the electron density cause
the action of the ponderomotive force. Figure~3! shows the
dependence of the maximum electron density on the ba
ground plasma density and clearly demonstrates the e
tence of a suppressing effect on the penetration of the e
tromagnetic radiation into an overdense plasma.

For the maximum incident amplitude, we can calcula
the width of the depletion region as

xd* 5ad*
A 2

3n0
S ad*

2

2n0
21D , ~22!

and the associated maximum of the longitudinal electric fi
integrating Poisson equation betweenx50 andxb . Making
use of the integral of motion and the expression for the ma
mum incident intensity, we find

Ed[n0xd5F4ath
2 2

2

3
n0S ad*

2

n0
21D G1/2

. ~23!

The corresponding results are presented in Fig. 4. Wha
interesting is that at plasma densities in the range ofn0
.1 –1.5, the longitudinal electric field is not an increasi

FIG. 3. Maximum electron density, normalized on the unp
turbed density, as a function of the critical parametern0. The
dashed line represents the unperturbed electron densityn5n0.
s.
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function of the incident intensity: at the beginning it in
creases with incident intensity reaching its maximum val
but then decreases to zero@see Fig. 4~a!#. This is a direct
consequence of the solitonlike solution presented by
~14!. At higher densities, the longitudinal field monotonous
increases with laser intensity until its threshold value. T
field, directly responsible for the ion dynamics and the fo
mation of shock waves entering the matter and compres
it, reaches a maximum value about two times larger than
limit amplitude of the incident wave atn0@1.

IV. CONCLUSIONS

In summary, we have used a stationary model to g
insight into the relativistic interaction problem of superi
tense laser radiation with an overdense plasma by cons
ing circularly polarized incident laser radiation. The ma
conclusion is that for laser penetration into a rather th
overdense plasma, a traveling-plane-wave approach ca
be applied because in real situations this regime canno
achieved, although, due to the relativistic increase of
electron mass and the associated decrease of the effe
plasma frequency, the nonlinear refractive index may
come positive. The nonlinear ponderomotive force genera
in the laser-plasma interaction leads to a compression of
electron-density profile that counteracts the increased p
etration due to the relativistic nonlinearity and plays a cruc
role in the description of the interaction between an ov
dense plasma and high-intensity laser radiation.

-

FIG. 4. Boundary position and boundary electric field@see Eq.
~4!# as functions of the incident intensity, forn051.2 ~dotted line!
andn052 ~dashed line!. All quantities are dimensionless.
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